Strength, anisotropy, and preferred orientation of solid argon at high pressures.
نویسندگان
چکیده
The elasticity and plasticity of materials at high pressure are of great importance for the fundamental insight they provide on bonding properties in dense matter and for applications ranging from geophysics to materials technology. We studied pressure-solidified argon with a boron-epoxy-beryllium composite gasket in a diamond anvil cell (DAC). Employing monochromatic synchrotron x-radiation and imaging plates in a radial diffraction geometry (Singh et al 1998 Phys. Rev. Lett. 80 2157; Mao et al 1998 Nature 396 741), we observed low strength in solid argon below 20 GPa, but the strength increases drastically with applied pressure, such that at 55 GPa, the shear strength exceeded 2.7 GPa. The elastic anisotropy at 55 GPa was four times higher than the extrapolated value from 30 GPa. Extensive (111) slip develops under uniaxial compression, as manifested by the preferred crystallographic orientation of (220) in the compression direction. These macroscopic properties reflect basic changes in van der Waals bondings under ultrahigh pressures.
منابع مشابه
Investigation of the strength and trend of seismic anisotropy beneath the Zagros collision zone
The Zagros collision zone is known as an active tectonic zone that represents the tectonic boundary between the Eurasian and Arabian plates. A popular strategy for gaining insight into the upper mantle processes is to examine the splitting of seismic shear waves and interpret them in terms of upper mantle anisotropy and deformation. Core phases SK(K)S from over 278 earthquakes (MW ≥ ...
متن کاملAnisotropic strength and deformational behavior of Himalayan schists
Anisotropy, which is characteristic of metamorphic rocks such as schists, is due to a process of metamorphic differentiation. Preferred orientation of minerals like mica and chlorite in response to tectonic stresses makes schistose rocks foliated. As a result their engineering properties vary with the direction of loading. The influence of transverse anisotropy on strength and deformational res...
متن کاملA Multi Plane Model for Natural Anisotropy of Sand
Anisotropy of sand is mainly due to the geometrical arrangement of particles that depends on the orientation of applied load respect to the bedding plane. It is geologically due to micro-fabric created by the arrangement of the particles configured during deposition. Most of the models develop using stress/strain invariants are not capable of identifying this kind of anisotropy. This is mainly ...
متن کاملDeformation of polycrystalline MgO at pressures of the lower mantle
[1] Room temperature investigations on the shear strength, elastic moduli, elastic anisotropy, and deformation mechanisms of MgO (periclase) are performed in situ up to pressures of 47 GPa using radial X-ray diffraction and the diamond anvil cell. The calculated elastic moduli are in agreement with previous Brillouin spectroscopy studies. The uniaxial stress component in the polycrystalline MgO...
متن کاملUpper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine
Seismic anisotropy in the oceanic lithosphere results from flow-induced crystallographic preferred orientation of dry olivine during lithosphere creation. Recent experiments, however, showed that high water activity changes the flow mechanisms of olivine and hence the crystallographic preferred orientation, better explaining the seismic anisotropy in the mantle wedge above subduction zones. Whe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 18 25 شماره
صفحات -
تاریخ انتشار 2006